Submission #1296113

#TimeUsernameProblemLanguageResultExecution timeMemory
1296113MunkhErdeneRed-blue table (IZhO19_stones)C++17
100 / 100
28 ms33840 KiB
#include <bits/stdc++.h> using namespace std; #define ull unsigned long long #define lll __int128 #define ll long long const ll mod = 1e9 + 7; const ll mod1 = 998244353; const ll naim = 1e9; const ll max_bit = 60; const ull tom = ULLONG_MAX; const ll MAXN = 100005; const ll LOG = 20; const ll NAIM = 1e18; const ll N = 2e6 + 5; int main() { #define pb push_back #define ff first #define ss second #define _ << " " << #define yes cout<<"YES\n" #define no cout<<"NO\n" #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define BlueCrowner ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); #define FOR(i, a, b) for (ll i = (a); i < (b); i++) #define FORD(i, a, b) for (ll i = (a); i >= (b); i--) // ---------- GCD ---------- auto gcd = [&](ll a, ll b) { while (b) { a %= b; swap(a, b); } return a; }; // ---------- LCM ---------- auto lcm = [&](ll a, ll b) { return a / gcd(a, b) * b; }; // ---------- Modular Exponentiation ---------- function<ll(ll, ll, ll)> modpow = [&](ll a, ll b, ll m) { ll c = 1; a %= m; while (b > 0) { if (b & 1) c = c * a % m; a = a * a % m; b >>= 1; } return c; }; // ---------- Modular Inverse (Fermat’s Little Theorem) ---------- function<ll(ll, ll)> modinv = [&](ll a, ll m) { return modpow(a, m - 2, m); }; // ---------- Factorials and Inverse Factorials ---------- vector<ll> fact(N), invfact(N); auto pre_fact = [&](ll n = N-1, ll m = mod) { fact[0] = 1; for (ll i = 1; i <= n; i++) fact[i] = fact[i-1] * i % m; invfact[n] = modinv(fact[n], m); for (ll i = n; i > 0; i--) invfact[i-1] = invfact[i] * i % m; }; // ---------- nCr ---------- auto nCr = [&](ll n, ll r, ll m = mod) { if (r < 0 || r > n) return 0LL; return fact[n] * invfact[r] % m * invfact[n-r] % m; }; // ---------- Sieve of Eratosthenes ---------- vector<ll> primes; vector<bool> is_prime(N); auto sieve = [&](ll n = N-1) { fill(is_prime.begin(), is_prime.begin() + n + 1, true); is_prime[0] = is_prime[1] = false; for (ll i = 2; i * i <= n; i++) { if (is_prime[i]) { for (ll j = i * i; j <= n; j += i) is_prime[j] = false; } } for (ll i = 2; i <= n; i++) if (is_prime[i]) primes.pb(i); }; function<void()> solve = [&]() { ll n, m; cin >> n >> m; vector<vector<char>> ans(n, vector<char>(m, '-')); ll sum = 0; if(n >= m){ sum = n; ll cur = 0; ll x = (n - 1) / 2; vector<ll> cnt(n, 0); FOR(i, 0, m){ FOR(j, 0, x){ ans[(cur + j) % n][i] = '+'; cnt[(cur + j) % n]++; } cur = (cur + x) % n; } FOR(i, 0, n){ ll j = 0; while(cnt[i] < m - (m - 1) / 2){ if(ans[i][j] == '-'){ ans[i][j] = '+'; cnt[i]++; } j++; } } FOR(i, 0, m){ ll cnt = 0; FOR(j, 0, n){ cnt += (ans[j][i] == '-'); } if(cnt >= n - (n - 1) / 2) sum++; } } else{ sum = m; ll cur = 0; ll x = (m - 1) / 2; vector<ll> cnt(m, 0); FOR(i, 0, n){ FOR(j, 0, x){ ans[i][(cur + j) % m] = '+'; cnt[(cur + j) % m]++; } cur = (cur + x) % m; } FOR(j, 0, m){ ll i = 0; while(cnt[j] < n - (n - 1) / 2){ if(ans[i][j] == '-'){ ans[i][j] = '+'; cnt[j]++; } i++; } } FOR(i, 0, n){ ll cnt = 0; FOR(j, 0, m){ cnt += (ans[i][j] == '-'); } if(cnt >= m - (m - 1) / 2) sum++; } FOR(i, 0, n){ FOR(j, 0, m){ ans[i][j] = (ans[i][j] == '+') ? '-' : '+'; } } } cout << sum << '\n'; FOR(i, 0, n){ FOR(j, 0, m){ cout << ans[i][j]; } cout << "\n"; } }; BlueCrowner; int t = 1; cin >> t; while (t--) { solve(); } }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...