Submission #1297330

#TimeUsernameProblemLanguageResultExecution timeMemory
1297330iamarmanRace (IOI11_race)C++20
100 / 100
359 ms45624 KiB
// Bismillahir Rahmanir Rahim // // After hardship comes ease // // AUTHOR : iamarman // // pragmas // #pragma GCC optimize("O3" ) // #pragma GCC optimize("Ofast,unroll-loops") // #pragma GCC optimize("tree-vectorize") #include<bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> using namespace std; using namespace __gnu_pbds; //// TEMPLATE //// //---------------------------------------------------------------------------------------------------------------------------------| # define el '\n' # define sp " " # define ff first # define ss second # define ll long long # define pb push_back # define mp make_pair # define yess1 cout<<1<<el # define noo cout<<"NO"<<el # define yess cout<<"YES"<<el # define siz(x) (int)x.size() # define ull unsigned long long # define all(v) v.begin(),v.end() # define allr(v) v.rbegin(),v.rend() # define torad(x) ((x) * ((2*acos(0))/180.0)) # define todeg(x) ((x) * (180.0/(2*acos(0)))) constexpr ll mod=998244353; constexpr ll INF=2e18; constexpr double PI= acos(-1); constexpr double eps=1e-9; # define mem(a,b) memset(a,b,sizeof(a)) # define sqr(a) ((a)*(a)) # define lcm(a,b) (a*b)/__gcd(a,b) # define optimise { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); } # define fraction(a) cout.unsetf(ios::floatfield); cout.precision(a); cout.setf(ios::fixed,ios::floatfield); # define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update> // find_by_order() - Returns an iterator to the k-th largest element (counting from zero) // order_of_key() - The number of items in a set that are strictly smaller than our item // greater instead of less for descending order // less_equal works as ordered multiset // we can use pair<int,int> instead of int for pair of orderd set // for multiset st.lower_bound(x) works as upper bound and st.upper_bound(x) works as lower bound inline void file() { #ifndef ONLINE_JUDGE freopen("input.txt", "r", stdin); freopen("output.txt", "w", stdout); #endif // ONLINE_JUDGE } //----------------------------------------------------------------------------------------------------------------------------------| // DEBUGGER // //----------------------------------------------------------------------------------------------------------------------------------| template < typename F, typename S > ostream& operator << ( ostream& os, const pair< F, S > & p ) { return os << "(" << p.first << ", " << p.second << ")"; } template < typename T > ostream &operator << ( ostream & os, const vector< T > &v ) { os << "{"; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << *it; } return os << "}"; } template < typename T > ostream &operator << ( ostream & os, const set< T > &v ) { os << "["; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << *it; } return os << "]"; } template < typename T > ostream &operator << ( ostream & os, const multiset< T > &v ) { os << "["; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << *it; } return os << "]"; } template < typename F, typename S > ostream &operator << ( ostream & os, const map< F, S > &v ) { os << "["; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << it -> first << " = " << it -> second ; } return os << "]"; } #define dbg(args...) do {cerr << #args << " : "; iamarman(args); } while(0) void iamarman () { cerr << endl; } template <typename T> void iamarman( T a[], int n ) { for(int i = 0; i < n; ++i) cerr << a[i] << ' '; cerr << endl; } template <typename T, typename ... hello> void iamarman( T arg, const hello &... rest) { cerr << arg << ' '; iamarman(rest...); } //--------------------------------------------------------------------------------------------------------------------------------------| ///// FUNCTIONS ///// ll bigmod(ll base,ll power){ ll res=1; ll p=base%mod; while(power>0) { if(power%2==1) { res=((res%mod)*(p%mod))%mod; } power/=2; p=((p%mod)*(p%mod))%mod; } return res; } ll inversemod(ll base) { return bigmod(base,mod-2); } ll poww(ull a,ull b) { ull ans=1; if(!b) return 1; while(b>1) { if(b&1) { ans=ans*a%mod; } a=a*a%mod; b/=2; }return a*ans%mod; } ll gcd(ll a,ll b) { ll rem; while(b%a!=0) { rem=b%a; b=a; a=rem; } return a; } ll sqrtt(ll a){ long long x = sqrt(a) + 2; while (x * x > a) x--; return x;} ll sqrt(ll n) {ll low=0,high=1e10; while(high-low>1){ ll mid=low+(high-low)/2; if(mid*mid<=n) low=mid; else high=mid; }return low; } long double sqrtd(long double n){ long double low=0,high=n,mid; for(int i=0;i<100;i++) { mid=(low+high)/2; if(mid*mid<=n) low=mid; else high=mid;} return low;} mt19937 rng(chrono::high_resolution_clock::now().time_since_epoch().count()); inline ll getrandom(ll a,ll b) { return uniform_int_distribution<ll>(a,b)(rng); } int dx[]={-1, 1 , 0 , 0 , -1 ,-1, 1, 1}; int dy[]={ 0, 0 ,-1 , 1 , -1 , 1,-1, 1}; // up = { -1,0 } , down = { 1,0 } , right = { 0,1 } , left = { 0,-1 } // up-right = { -1,1 } , up-left = { -1,-1 } , down-right = { 1,1 } , down-left = { 1,-1 } /// ____________CODE STARTS FROM HERE____________ /// ll best_path(int N, int K, int H[][2], int L[]) { int n=N,k=K; vector<vector<pair<int,int>> > graph(n+1); for(int i=1;i<=n;i++) { int u=H[i-1][0],v=H[i-1][1]; u++,v++; int w=L[i-1]; graph[u].push_back({v,w}); graph[v].push_back({u,w}); } vector<int> sz(n+1,0),used(n+1,0); auto get_size=[&](auto &&self,int node,int par)->int { sz[node]=1; for(auto it : graph[node]) { if(it.ff==par or used[it.ff]) continue; sz[node]+=self(self,it.ff,node); } return sz[node]; }; auto centroid=[&](auto &&self,int node,int par,int size)->int { for(auto it : graph[node]) { if(it.ff==par or used[it.ff]) continue; if(sz[it.ff]>size/2) return self(self,it.ff,node,size); } return node; }; ll ans=INF; vector<ll> mn(k+5,INF); auto process=[&](int cent)->void { vector<int> nodes; nodes.pb(0); mn[0]=0; for(auto [it,w] : graph[cent]) { if(used[it]) continue; vector<pair<ll,ll>> sub_dis; auto get_dis=[&](auto &&self,int node,int par,int dis,ll cur)->void { if(cur>k) return; sub_dis.pb({cur,dis}); for(auto [it,w] : graph[node]) { if(it==par or used[it]) continue; self(self,it,node,dis+1,cur+w); } }; get_dis(get_dis,it,cent,1,w); for(auto d : sub_dis) { if(mn[k-d.ff]!=INF) { ans=min(ans, mn[k-d.ff]+d.ss); } } for(auto it : sub_dis) { mn[it.ff]=min(mn[it.ff],it.ss); } for(auto d : sub_dis) { nodes.pb(d.ff); } } for(auto d : nodes) { mn[d]=INF; } }; auto decompose=[&](auto &&self,int node,int cur)->void { int size=get_size(get_size,node,0); int cent=centroid(centroid,node,0,size); used[cent]=1; process(cent); for(auto [it,w] : graph[cent]) { if(used[it]) continue; self(self,it,cur+1); } }; decompose(decompose,1,0); if(ans==INF) return -1; return ans; } // void solve() // { // int n,k; // cin>>n>>k; // vector<vector<pair<int,int>> > graph(n+1); // for(int i=1;i<n;i++) // { // int u,v,w; // cin>>u>>v>>w; // graph[u].push_back({v,w}); // graph[v].push_back({u,w}); // } // vector<int> sz(n+1,0),used(n+1,0); // auto get_size=[&](auto &&self,int node,int par)->int // { // sz[node]=1; // for(auto it : graph[node]) // { // if(it.ff==par or used[it.ff]) continue; // sz[node]+=self(self,it.ff,node); // } // return sz[node]; // }; // auto centroid=[&](auto &&self,int node,int par,int size)->int // { // for(auto it : graph[node]) // { // if(it.ff==par or used[it.ff]) continue; // if(sz[it.ff]>size/2) return self(self,it.ff,node,size); // } // return node; // }; // ll ans=INF; // vector<ll> mn(k+5,INF); // auto process=[&](int cent)->void // { // vector<int> nodes; // nodes.pb(0); // mn[0]=0; // for(auto [it,w] : graph[cent]) // { // if(used[it]) continue; // vector<pair<ll,ll>> sub_dis; // auto get_dis=[&](auto &&self,int node,int par,int dis,ll cur)->void // { // if(cur>k) return; // sub_dis.pb({cur,dis}); // for(auto [it,w] : graph[node]) // { // if(it==par or used[it]) continue; // self(self,it,node,dis+1,cur+w); // } // }; // get_dis(get_dis,it,cent,1,w); // for(auto d : sub_dis) // { // if(mn[k-d.ff]!=INF) // { // ans=min(ans, mn[k-d.ff]+d.ss); // } // } // for(auto it : sub_dis) // { // mn[it.ff]=min(mn[it.ff],it.ss); // } // for(auto d : sub_dis) // { // nodes.pb(d.ff); // } // } // for(auto d : nodes) // { // mn[d]=INF; // } // }; // auto decompose=[&](auto &&self,int node,int cur)->void // { // int size=get_size(get_size,node,0); // int cent=centroid(centroid,node,0,size); // used[cent]=1; // process(cent); // for(auto [it,w] : graph[cent]) // { // if(used[it]) continue; // self(self,it,cur+1); // } // }; // decompose(decompose,1,0); // cout<<ans<<el; // } // int main() // { // optimise; // file(); // clock_t start= clock(); // int t=1; // //cin>>t; // for(int i=1;i<=t;i++) // { // solve(); // } // cerr << "Run Time : " <<((double)(clock() - start) / CLOCKS_PER_SEC)<<el; // }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...